jueves, 26 de abril de 2012

Reciclado de los plasticos

Minimizar el volumen y peso de los residuos es el primer paso para resolver el problema global de los mismos. Todo gerenciamiento de los Residuos Sólidos Urbanos debe comenzar por la reducción en la fuente.
Reciclado en la fuente
Uno de los problemas es que el acento debe ponerse en cómo generar cada vez menos residuos, de cualquier índole como residuos plásticos.
La reducción en la fuente se refiere directamente al diseño y a la etapa productiva de los productos, principalmente envases, antes de ser consumidos. Es una manera de concebir los productos con un nuevo criterio ambiental; generar menos residuos. Y esto es aplicable a todas las materias primas: vidrio, papel, cartón, aluminio y plásticos.
En el caso de estos últimos residuos, la reducción en la fuente es responsabilidad de la industria petroquímica (fabricante de los diferentes tipos de plásticos), de la industria transformadora (que toma esos plásticos para fabricar los diferentes productos finales), y de quien diseña el envase (envasador).
Aunque podría decirse que al consumidor también le cabe una buena parte de la responsabilidad: en las góndolas de los supermercados es él quien tiene la facultad de elegir entre un producto que ha sido concebido con criterio de reducción en la fuente y otro que derrocha materia prima y aumenta innecesariamente el volumen de los residuos.
Reducir en la fuente significa referirse a la investigación, desarrollo y producción de objetos utilizando menos recursos (materia prima). De ahí su denominación porque se aplica a la faz productiva. Al utilizar menos materia prima se producen menos residuos y además se aprovechan mejor los recursos naturales.
Minimizar el volumen y peso de los residuos es el primer paso para resolver el problema global de los mismos. Todo gerenciamiento de los Residuos Sólidos Urbanos debe comenzar por la reducción en la fuente.
Las principales ventajas de la reducción en la fuente:
-Disminuye la cantidad de residuos; es mejor no producir residuos que resolver qué hacer con ellos.
-Ayuda a que los rellenos sanitarios no se saturen rápidamente.
-Se ahorran recursos naturales -energía y materia prima- y recursos financieros
-La reducción en la fuente aminora la polución y el efecto invernadero. Requiere menos energía transportar materiales más livianos. Menos energía significa menos combustible quemado, lo que implica a su vez menor agresión al ambiente.
Etapas para reciclar el plástico:
A)Recolección: Todo sistema de recolección diferenciada que se implemente descansa en un principio fundamental, que es la separación, en el hogar, de los residuos en dos grupos básicos: residuos orgánicos por un lado e inorgánicos por otro; en la bolsa de los residuos orgánicos irían los restos de comida, de jardín, y en la otra bolsa los metales, madera, plásticos, vidrio, aluminio. Estas dos bolsas se colacarán en la vía pública y serán recolectadas en forma diferenciada, permitiendo así que se encaucen hacia sus respectivas formas de tratamiento.
B)Centro de reciclado: Aquí se reciben los residuos plásticos mixtos compactados en fardos que son almacenados a la interperie. Existen limitaciones para el almacenamiento prolongado en estas condiciones, ya que la radiación ultravioleta puede afectar a la estructura del material, razón por la cual se aconseja no tener el material expuesto más de tres meses.
C)Clasificación: Luego de la recepción se efectúa una clasificación de los productos por tipo de plástico y color. Si bien esto puede hacerse manualmente, se han desarrollado tecnologías de clasificación automática, que se están utilizando en países desarrollados. Este proceso se ve facilitado si existe una entrega diferenciada de este material, lo cual podría hacerse con el apoyo y promoción por parte de los municipios.
Reciclado Mecánico
El reciclado mecánico es el más difundido en la opinión pública en la Argentina, sin embargo este proceso es insuficiente por sí solo para dar cuenta de la totalidad de los residuos.
El reciclado mecánico es un proceso físico mediante el cual el plástico post-consumo o el industrial (scrap) es recuperado, permitiendo su posterior utilización.
Los plásticos que son reciclados mecánicamente provienen de dos grandes fuentes:
-Los residuos plásticos proveniente de los procesos de fabricación, es decir, los residuos que quedan al pie de la máquina, tanto en la industria petroquímica como en la transformadora. A esta clase de residuos se la denomina scrap. El scrap es más fácil de reciclar porque está limpio y es homogéneo en su composición, ya que no está mezclado con otros tipos de plásticos. Algunos procesos de transformación (como el termoformado) generan el 30-50% de scrap, que normalmente se recicla.
-Los residuos plásticos proveniente de la masa de Residuos Sólidos Urbanos (RSU).
Estos se dividen a su vez en tres clases:
A)Residuos plásticos de tipo simple: han sido clasificados y separados entre sí los de distintas clases.
B)Residuos mixtos: los diferentes tipos de plásticos se hallan mezclados entre sí.
C)Residuos plásticos mixtos combinados con otros residuos: papel, cartón, metales.
Reciclado Químico
Se trata de diferentes procesos mediante los cuales las moléculas de los polímeros son craqueadas (rotas) dando origen nuevamente a materia prima básica que puede ser utilizada para fabricar nuevos plásticos.
El reciclado químico comenzó a ser desarrollado por la industria petroquímica con el objetivo de lograr las metas propuestas para la optimización de recursos y recuperación de residuos. Algunos métodos de reciclado químico ofrecen la ventaja de no tener que separar tipos de resina plástica, es decir, que pueden tomar residuos plásticos mixtos reduciendo de esta manera los costos de recolección y clasificación. Dando origen a productos finales de muy buena calidad.
Principales procesos existentes:
-Pirólisis:
Es el craqueo de las moléculas por calentamiento en el vacío. Este proceso genera hidrocarburos líquidos o sólidos que pueden ser luego procesados en refinerías.
-Hidrogenación:
En este caso los plásticos son tratados con hidrógeno y calor. Las cadenas poliméricas son rotas y convertidas en un petróleo sintético que puede ser utilizado en refinerías y plantas químicas.
-Gasificación:
Los plásticos son calentados con aire o con oxígeno. Así se obtienen los siguientes gases de síntesis: monóxido de carbono e hidrógeno, que pueden ser utilizados para la producción de metanol o amoníaco o incluso como agentes para la producción de acero en hornos de venteo.
-Chemolysis:
Este proceso se aplica a poliésteres, poliuretanos, poliacetales y poliamidas. Requiere altas cantidades separadas por tipo de resinas. Consiste en la aplicación de procesos solvolíticos como hidrólisis, glicólisis o alcohólisis para reciclarlos y transformarlos nuevamente en sus monómeros básicos para la repolimerización en nuevos plásticos.
-Metanólisis:
Es un avanzado proceso de reciclado que consiste en la aplicación de metanol en el PET. Este poliéster (el PET), es descompuesto en sus moléculas básicas, incluido el dimetiltereftalato y el etilenglicol, los cuales pueden ser luego repolimerizados para producir resina virgen. Varios productores de polietilentereftalato están intentando de desarrollar este proceso para utilizarlo en las botellas de bebidas carbonadas. Las experiencias llevadas a cabo por empresas como Hoechst-Celanese, DuPont e Eastman han demostrado que los monómeros resultantes del reciclado químico son lo suficientemente puros para ser reutilizados en la fabricación de nuevas botellas de PET.
Estos procesos tienen diferentes costos y características. Algunos, como la chemolysis y la metanólisis, requieren residuos plásticos separados por tipo de resina. En cambio la pirólisis permite utilizar residuos plásticos mixtos.
Perspectivas del reciclado químico:
-El reciclado químico se encuentra hoy en una etapa experimental avanzada. Es de suponer que en los próximos años pueda transformarse en una poderosa y moderna herramienta para tratar los residuos plásticos. El éxito dependerá del entendimiento que pueda establecerse entre todos los actores de la cadena: petroquímicas, transformadores, grandes usuarios, consumidores y municipios, a los fines de asegurar la unidad de reciclado y que la materia prima llegue a una planta de tratamiento.
-La sociedad debe estar preparada para tal cambio de tecnología en lo que hace al tratamiento de los residuos plásticos. Por su parte, la industria petroquímica está trabajando en la definición de especificaciones técnicas a los fines de garantizar la calidad de los productos obtenidos a través del reciclado químico.
-Si bien el reciclado mecánico se halla en un estado más evolucionado, éste solo no alcanza para resolver el problema de los residuos. No sería inteligente desdeñar cualquier otra forma de tratamiento por incipiente que fuera. Lo que hoy parece muy lejano puede que dentro de las próximas dos décadas se convierta en una realidad concreta. En el caso de los plásticos se debe tener en cuenta que se trata de hidrocarburos, por lo que, para un recurso no renovable como el petróleo, es especialmente importante desarrollar técnicas como el reciclado químico para generar futuras fuentes de recursos energéticos. Los plásticos post-consumo de hoy pueden considerarse como los combustibles o las materias primas del mañana. Además, el reciclado químico contribuirá con la optimización y ahorro de los recursos naturales al reducir el consumo de petróleo crudo para la industria petroquímica.
-De todas las alternativas de valorización quizá ninguna esté hecha tan a medida de los plásticos como el reciclado químico. Es muy probable que se transforme en la vía más apropiada de recuperación de los residuos plásticos, tanto domiciliarios como los provenientes del scrap (post-industrial), obteniéndose materia prima de calidad idéntica a la virgen. Esto contrasta con el reciclado mecánico, donde no siempre se puede asegurar una buena y constante calidad del producto final. El reciclado químico ofrece posibilidades que resuelven las limitaciones del reciclado mecánico, que necesita grandes cantidades de residuos plásticos limpios, separados y homogéneos para poder garantizar la calidad del producto final. Los residuos plásticos domiciliarios suelen estar compuestos por plásticos livianos, pequeños, fundamentalmente provenientes de los envases, pueden estar sucios y presentar substancias alimenticias. Todo esto dificulta la calidad final del reciclado mecánico, ya que se obtiene un plástico más pobre comparado con la resina virgen.
Por lo tanto, los productos hechos de plástico así reciclado se dirigen a mercados finales de precios bajos. Por el contrario, el reciclado químico supera estos inconvenientes, ya que no es necesaria la clasificación de los distintos tipos de resinas plásticas proveniente de los residuos. En este proceso pueden se tratados en forma mixta, reduciendo costos de recolección y clasificación. Además, lleva a productos finales de alta calidad que sí garantizan un mercado.
Toda estrategia de gestión integral de los Residuos Sólidos Urbanos debe prever y contemplar la posibilidad del reciclado químico. El tratamiento de los residuos plásticos no puede ser resuelto unilateralmente por uno u otro proceso, debiendo analizarse las diferente alternativas de reciclado.

Metodos de reparacion más usuales.


Las piezas de plástico en el automóvil son numerosas y su reparación ya es un hecho habitual en el taller. Los diferentes métodos que se utilizan para preparar las piezas plásticas permiten obtener unos excelentes resultados.
Es evidente que el uso de los plásticos en el automóvil es cada vez más frecuente, por lo que el número de piezas en plástico que sufren daños en los siniestros, es también mayor. La reparación de plásticos se convierte en uno de los trabajos cotidianos realizados por el taller y los técnicos deben estar formados y experimentados para acometer estas reparaciones y conseguir unos resultados óptimos.

Métodos de reparación
Los métodos de reparación de plásticos son la soldadura, los adhesivos y la conformación, estos se pueden complementar entre ellos para obtener un acabado satisfactorio. Todas son técnicas de reparación sencillas y rápidas que no requieren una gran especialización y con las que se consiguen reparaciones de calidad, solamente es necesario seguir el proceso de trabajo correcto, junto con la utilización del equipamiento y los productos adecuados.

Aspectos a tener en cuenta
Cuando el técnico se encuentra con una pieza de plástico dañada, previamente debe realizar un análisis del daño y de la pieza para tomar la solución más adecuada. En algunos casos, puede ser más conveniente la sustitución que la reparación, por ello el técnico ha de estudiar siempre la situación concreta que se le presenta. Para analizar y valorar cual sería la opción más adecuada es necesario tener en cuenta una serie de aspectos importantes como:

- Tipo de pieza.
- Tipo, magnitud y localización del daño.
- Tipo de plástico.

Las piezas que pueden ser reparadas son muchas, paragolpes, rejillas, molduras, tapas, carenados de motos e incluso salpicaderos, en todas ellas habrá que valorar el coste económico de la reparación frente a la sustitución.

En piezas de bajo precio, el coste económico de la reparación puede ser más alto que el de la sustitución. También se ha de tener en cuenta el acabado estético final que necesitan algunos tipos de pieza y si se puede conseguir con la reparación a efectuar.

Los tipos de daño que pueden aparecer son deformaciones más o menos acentuadas, las cuales en función de su gravedad y de la aparición de fisuración podrán repararse.

En las grietas o roturas será necesario recuperar la resistencia de la zona, empleándose en algunos casos refuerzos. Para las leves pérdidas de material o arañazos la reparación se limita a rellenar la zona mediante masillas, éste tipo de daños son meramente estéticos. En cualquier caso la magnitud que presenten los daños indicará si es recomendable realizar la reparación o la sustitución de la pieza dañada.

El tipo de plástico con el que está fabricada la pieza es otro de los puntos que influyen en la elección del método de reparación adecuado. Los tipos de plástico más empleados en la industria del automóvil se pueden clasificar en tres grandes grupos es más de lo mismo que conté pero lo repetiré aqui:

- Los termoplásticos, que se comportan de forma reversible a la temperatura, son soldables y se pueden conformar y deformar con calor tantas veces como se precise, por lo que admiten la reparación por soldadura y conformación, no obstante también se pueden reparar por adhesivos.

- Los termoestables, en los que un calentamiento excesivo provoca su descomposición sin alterar su forma, no se pueden soldar ya que se carbonizan y se reparan por adhesivos.

- Los elastómeros, que como su nombre indica poseen cierta elasticidad, se deforman fácilmente bajo los efectos de una fuerza externa y al cesar ésta recuperan su forma. Una aplicación de calor excesivo sobre ellos provoca su degradación, por lo que se reparan por adhesivos.

Reparación por soldadura
La reparación por soldadura consiste en la unión del material mediante la aplicación de calor y un material de aporte exterior. Una vez alcanzada la temperatura de soldadura, los materiales se funden y se produce la unión del material base de la pieza con el material de aporte exterior.

Las pautas principales a cumplir son dos: los materiales de la varilla de aporte y de la pieza han de ser de la misma naturaleza, y la temperatura de soldeo debe ser la adecuada. Una temperatura inferior da lugar a uniones de escasa resistencia y una temperatura superior puede degradar el material, por lo que el soplete de aire caliente se regulará en función del tipo de plástico de la pieza.

El equipo básico para acometer este tipo de reparación es un soplete de aire caliente, taladro con broca y fresa, lijadora y las varillas de diferentes materiales plásticos para soldar.

La resistencia mecánica conseguida en la unión es óptima, por lo que es conveniente utilizar este método siempre que las condiciones lo permitan y se trate de plásticos termoplásticos.

Reparación por adhesivosLa reparación por adhesivos consiste en unir las superficies mediante la aplicación de un adhesivo con afinidad a los sustratos, de forma que se produce su anclaje a las superficies. En esta reparación el aspecto fundamental es la idoneidad del adhesivo utilizado, así como la preparación de las superficies a unir, ya que los plásticos son materiales de baja tensión superficial y por lo tanto de difícil pegado. Los sistemas de reparación del mercado suelen llevar varios adhesivos para adaptarse mejor a cada tipo de sustrato y a los diferentes grados de rigidez que pueden presentar los materiales. Para que la unión mantenga cierta continuidad, el adhesivo ha de tener una rigidez lo más parecida posible al sustrato que está uniendo. Los adhesivos suelen ser en base a poliuretano, a resinas de epoxi, o de poliéster, y junto a ellos los fabricantes suelen suministrar unos productos específicos para plásticos, limpiadores e imprimaciones, que se utilizan para mejorar la adhesión a los sustratos.

Los componentes básicos del equipo de reparación por adhesivos lo forman el adhesivo y productos complementarios, más un taladro con broca y fresa, lijadora y espátulas para la aplicación de los adhesivos. La ventaja de este método es su versatilidad, pudiéndose utilizar para todos los tipos de plásticos, termoplásticos, termoestables y elastómeros.

Reparación por conformación
En los plásticos termoplásticos las deformaciones pueden repararse por simple conformación aplicando calor y presión a la superficie de la pieza. Este tipo de reparación se utiliza tanto en deformaciones en las que no existe rotura del material, como en aquellas en las que se combina una deformación con una rotura. En ambos casos, para recuperar la forma de la superficie se trabaja la zona con calor y presión, el calor ablanda el material y mediante presión se trabaja la zona presionando la superficie de la pieza hasta recuperar la forma inicial. No obstante, se debe prestar atención a la superficie del daño para no reparar aquellas piezas en las que se aprecie que el material en la zona de la deformación presenta pequeñas fisuraciones del material de color blanco, esto indica que el material en su deformación se ha estirado en exceso agrietándose.

Las herramientas a utilizar son básicas: un soplete de aire caliente y los útiles de presión para conformar.Este método de reparación es muy sencillo, rápido y de bajo coste económico, pero solamente es aplicable a los plásticos termoplásticos.

Los métodos de reparación son varios y se han de utilizar seleccionando previamente cual es el más adecuado a cada pieza dañada. Si además, la reparación se realiza siguiendo el método de trabajo correcto y con el equipo y productos necesarios se deben obtener unos resultados de calidad.

miércoles, 25 de abril de 2012

Clasificacion de los materiales plasticos en automocion

Los materiales plasticos se clasifican en tres tipos:

Termoplasticos.
Un termoplástico es un plástico que, a temperatura caliente, es plástico o deformable, se derrite cuando se calienta y se endurece en un estado vítreo cuando se enfría lo suficiente. La mayor parte de los termoplásticos son polímeros de alto peso molecular, los cuales poseen cadenas asociadas por medio de débiles fuerzas Van der Waals (polietileno); fuertes interacciones dipolo-dipolo y enlace de hidrógeno, o incluso anillos aromáticos apilados (poliestireno). Los polímeros termoplásticos difieren de los polímeros termoestables en que después de calentarse y moldearse pueden recalentarse y formar otros objetos, mientras que en el caso de los termoestables o termoduros, después de enfriarse la forma no cambia y arden.
Sus propiedades físicas cambian gradualmente si se funden y se moldean varias veces (historial térmico), generalmente disminuyen estas propiedades.
Los más usados son: el polietileno (PE), el polipropileno (PP), el poliestireno (PS), el polimetilmetacrilato (PMMA), el policloruro de vinilo (PVC), el politereftalato de etileno (PET), el teflón (o politetrafluoretileno, PTFE) y el nylon (un tipo de poliamida).
Se diferencian de los termoestables (baquelita, goma vulcanizada) en que éstos últimos no funden al elevarlos a altas temperaturas, sino que se queman, siendo imposible volver a moldearlos.
Muchos de los termoplásticos conocidos pueden ser resultado de la suma de varios polímeros, como es el caso del vinilo, que es una mezcla de polietileno y polipropileno.

                                                      Diversos elementos termopalsticos.

Termoendurecibles o termoestables.
 Los plásticos termoestables son polímeros infusibles e insolubles. La razón de tal comportamiento estriba en que las cadenas de estos materiales forman una red tridimensional espacial, entrelazándose con fuertes enlaces covalentes. La estructura así formada toma el aspecto macroscópico de una única molécula gigantesca, cuya forma se fija permanentemente, debido a que la movilidad de las cadenas y los grados de libertad para rotación en los enlaces es prácticamente cero.

El proceso de polimerización se suele dar en dos etapas: en la primera se produce la polimerización parcial, formando cadenas lineales mientras que en la segunda el proceso se completa entrelazando las moléculas aplicando calor y presión durante el conformado. La primera etapa se suele llevar a cabo en la planta química, mientras que la segunda se realiza en la planta de fabricación de la pieza terminada. También pueden obtenerse plásticos termoestables a partir de dos resinas líquidas, produciéndose la reacción de entrelazamiento de las cadenas al ser mezcladas (comúnmente con un catalizador y un acelerante).
La reacción de curado es irreversible, de forma que el plástico resultante no puede ser reciclado, ya que si se incrementa la temperatura el polímero no funde, sino que alcanza su temperatura de degradación. Por establecer un símil por todos conocido, es como cocer un huevo; si volvemos a elevar la temperatura una vez cocido y enfriado, el huevo no sufre ninguna transformación, y si elevamos la temperatura demasiado el huevo se quema.

 Los plásticos termoestables poseen algunas propiedades ventajosas respecto a los termoplásticos. Por ejemplo, mejor resistencia al impacto, a los solventes, a la permeación de gases y a las temperaturas extremas. Entre las desventajas se encuentran, generalmente, la dificultad de procesamiento, la necesidad del curado, el carácter quebradizo del material (frágil) y el no presentar reforzamiento al someterlo a tensión.


Elastomeros.
Los elastómeros son aquellos polímeros que muestran un comportamiento elástico. El término, que proviene de polímero elástico, es a veces intercambiable con el término goma, que es más adecuado para referirse a vulcanizados. Cada uno de los monómeros que se unen entre sí para formar el polímero está normalmente compuesto de carbono, hidrógeno, oxígeno y/o silicio. Los elastómeros son polímeros amorfos que se encuentran sobre su temperatura de transición vítrea o Tg, de ahí esa considerable capacidad de deformación. A temperatura ambiente las gomas son relativamente blandas (E~3MPa) y deformables. Se usan principalmente para cierres herméticos, adhesivos y partes flexibles. Comenzaron a utilizarse a finales del siglo XIX, dando lugar a aplicaciones hasta entonces imposibles (como los neumáticos de automóvil).

 Los elastómeros suelen ser normalmente polímeros termoestables pero pueden ser también termoplásticos. Las largas cadenas poliméricas enlazan durante el curado. La estructura molecular de los elastómeros puede ser imaginada como una estructura de "espaguetis con albóndigas", en dónde las albóndigas serían los enlaces. La elasticidad proviene de la habilidad de las cadenas para cambiar su posición por sí mismas y así distribuir una cierta tensión aplicada. El enlace covalente asegura que el elastómero retornará a su posición original una vez deje de aplicarse la tensión. Como resultado de esa extrema flexibilidad, los elastómeros pueden alargarse de un 5% a un 700%, dependiendo del material en concreto. Sin los enlaces o con pocos de ellos, la tensión aplicada puede provocar una deformación permanente.

Los elastómeros que han sido enfriados llevándolos a una fase vítrea o cristalina tendrán menos movilidad en las cadenas, y consecuentemente menos elasticidad que aquellos manipulados a temperaturas superiores a la temperatura de transición vítrea del polímero.
Es también posible para un polímero exhibir elasticidad que no es debida a los enlaces covalentes, sino a razones termodinámicas.



Principales plasticos en los automoviles

A continuacion expondre los principales plasticos usados en el automovil y sus caracteristicas.
Quiero disculparme por la presentacion de esta entrada, por la letra pequeña etc, pero es que no consigo de ninguna de las formas arreglarlo. De todas formas me parece que la informacion esta bastante bien.

Nomenclatura: ABS

Nombre del plástico:
ACRILONITRILO BUTADIENO ESTIRENO.

Tipo:
Termoplástico
.

Información:
Al calentar en la zona agrietada, se libera la tensión y suelen aparecer otras grietas que con anterioridad no se apreciaban.
Estructura rígida.
Éste plástico a temperatura de fusión, produce hervidos en la superficie y es muy deformable.
Con temperaturas inferiores a 10° se agrietan los contornos de la soldadura, por lo que es preciso calentar previamente la pieza.
Permite se recubrimiento con una capa metálica. Pero también existe la soldadura química, cuyo proceso es bastante mas sencillo y fiable.
Ejemplo:
Con una pieza de ABS se rascan virutas ,y se unen en un recipiente adecuado con acetona.
El resultado es una pasta de plástico ABS que se puede aplicar en cualquier tipo de zona con una paleta o incluso un destornillador.
Lo que se consigue una vez evaporada la acetona es de una solidez mayor a la de la pieza del plástico original.


Temperatura de soldadura:
300º 350º.

Arde: Bien.
Humo: Muy negro.
Color de la llama: Amarillo anaranjado.



 Nomenclatura: ABS - PC

Nombre del plástico:
ABS POLICARBONATO ALPHA.

Tipo:
Termoplástico
.

Información:
Estructura más rígida que el plástico ABS.
Buena resistencia al choque.
Éste plástico a temperatura de fusión, produce hervidos en la superficie y es deformable.

Temperatura de soldadura:
300º 350º.

Arde: Bien.
Humo: Negro.
Color de la llama: Amarillo grisáceo.



Nomenclatura: EP

Nombre:
RESINA EPOXI.

Tipo:
Termofusible
.

Información:
Estructura rígida o elástica, en función de las modificaciones y agentes de curado.
Excelente adherencia en cualquier plástico, excepto los olefínicos.(PP,PE)
Se puede reforzar con cargas. (La típica fibra de vidrio).
Presenta baja contracción de curado y alta estabilidad dimensional.
Tiene buen comportamiento a temperaturas elevadas, hasta 180°.
Posee buena resistencia a los agentes químicos.
Su manipulación exige la protección del que lo manipula y siguiendo la forma de uso del fabricante.
Muy utilizado en el tuning para fabricar y reparar faldones, parachoques, taloneras, spoilers, alerones, etc.

Temperatura de soldadura:
--------.

Arde: Bien.
Humo: Negro.
Color de la llama: Amarillo.



 Nomenclatura: PA

Nombre del plástico:
POLIAMIDA.

Tipo:
Termoplástico
.

Información:
Se alea fácilmente con otros tipos de plásticos y admite cargas de refuerzo.
Se fabrican en varias densidades, desde flexibles,como la goma, hasta rígido, como el nylon.
Presenta buenas propiedades mecánicas y facilidad de mecanizado.
Buena resistencia al impacto y al desgaste.
Éste plástico se suelda con facilidad.

Temperatura de soldadura:
350º 400º.

Arde: Mal.
Humo: No.
Color de la llama: Azul.



 Nomenclatura: PC

Nombre del plástico:
POLICARBONATO.

Tipo:
Termoplástico
.

Información:
Presenta muy buena resistencia al choque entre –30° y 80°.
Muy resistente al impacto, fácil de soldar y pintar. Soporta temperaturas en horno hasta 120°.
Al soldar se deforma con facilidad y produce hervidos.
Éste plástico en estado puro se distingue por su gran transparencia.

Temperatura de soldadura:
300º 350º.

Arde: Mal.
Humo: Negro.
Color de la llama: Amarillo oscuro.



 Nomenclatura: PC - PBT

Nombre del plástico:
POLICARBONATO POLIBUTUILENO TEREFTALATO.

Tipo:
Termoplástico
.

Información:
Estructura muy rígida y de gran dureza.
Buena resistencia al choque entre -30° y 80°.
A temperatura de fusión, éste plástico produce hervidos en la superficie y es fácilmente deformable.

Temperatura de soldadura:
300º 350º.

Arde: Bien.
Humo: Negro.
Color de la llama: Amarillo grisáceo.




Nomenclatura: PE

Nombre del plástico:
POLIETILENO.

Tipo:
Termoplástico
.

Información:
Estructura muy elástica, con buena recuperación al impacto.
Plástico con aspecto y tacto ceroso.
Resistente a la mayor parte de los disolventes y ácidos
El periodo elástico y plástico es mayor que en otros plásticos.
Poca resistencia al cizallamiento.
A partir de 87° tiende a deformarse
Muy buenas cualidades de moldeo".
Plástico muy usado el la fabricación de parachoques.

Temperatura de soldadura:
275º 300º.

Arde: Mal.
Humo: No.
Color de la llama: Amarillo claro y azul




Nomenclatura: PP

Nombre del plástico:
POLIPROPILENO.

Tipo:
Termoplástico
.

Información:
Plástico que posee características muy similares a las del polietileno y supera en muchos casos sus propiedades mecánicas.
Rígido, con buena elasticidad.
Aspecto y tacto agradables.
Resiste temperaturas hasta 130°.
Admite fácilmente cargas reforzantes(fibras de vidrio, talcos ,etc..) que dan lugar a materiales con posibilidades de mecanizado muy interesantes.
Es uno de los plásticos mas usados en la automoción en todo tipo de elementos y piezas.

Temperatura de soldadura:
275º 300º.

Arde: Bien.
Humo: Ligero.
Color de la llama: Amarillo claro.




Nomenclatura: PP - EPDM

Nombre:
ETILENO PROPILENO CAUCHO POLIPROPILENO.

Tipo del plástico:
Termoplástico
.

Información:
Estructura elástica, con buena recuperación de la deformación por impacto.
Su aspecto y tacto es ceroso.
Se suelda con facilidad.
Resistente a la mayoría de los disolventes.
Se daña fácilmente al cizallamiento
A partir de 90° tiende a deformarse.
En el desbarbado de la soldadura tiende a embotarse con facilidad.
Éste plástico presenta una mayor elasticidad y resistencia al impacto que el PP puro.

Temperatura de soldadura:
275º 300º.

Arde: Bien.
Humo: Ligero.
Color de la llama: Amarillo y azul.




Nomenclatura: PPO

Nombre del plástico:
OXIDO DE POLIFENILENO.

Tipo:
Termoplástico
.

Información:
Sin datos para este plástico.

Temperatura de soldadura:
350º 400º.

Arde: Bien.
Humo: No.
Color de la llama: Amarillo claro.




Nomenclatura: PUR

Nombre:
POLIURETANO.

Tipo:
Termofusible (*)
.

Información:
* Se puede presentar como termoestable, termoplástico o incluso elastómetro.
Estructura rígida, semirrígida y flexible.
Resistente a los ácidos y disolventes.
Soporta bien el calor.
Las deformaciones existentes en elementos de espuma flexible pueden corregirse fácilmente aplicando calor.
Las reparaciones pueden efectuarse con adhesivos de PUR, y con resinas epoxy.
Se pueden reforzar mediante la adicción de cargas.

Temperatura de soldadura:
--------.

Arde: Bien.
Humo: Negro.
Color de la llama: Amarillo anaranjado.




Nomenclatura: PVC

Nombre del plástico:
CLORURO DE POLIVINILO.

Tipo:
Termoplástico
.

Información:
Admite cantidad de aditivos, que dan lugar a materiales aparentemente distintos.
Alta resistencia al desgaste.
Estructuras desde rígidas a flexibles.
Este plástico se suelda bien químicamente.
Temperatura de soldadura:
265º 300º

Arde: Mal.
Humo: Negro.
Color de la llama: Amarillo y azul

 

PROCESOS QUÍMICOS DE PRODUCCIÓN DE MATERIALES PLÁSTICOS:

Los principales procesos quimicos de produccion de materiales plasticos son:

Polimerización
La polimerización es un proceso químico por el que los reactivos, monómeros (compuestos de bajo peso molecular) se agrupan químicamente entre sí, dando lugar a una molécula de gran peso, llamada polímero, o bien una cadena lineal o una macromolécula tridimensional.
Existen muchos tipos de polimerización y varios sistemas para categorizarlos. Las categorías principales son:
  1. Polimerización por adición y condensación.
  2. Polimerización de crecimiento en cadena y en etapas.
1. Una polimerización es por adición si la molécula de monómero pasa a formar parte del polímero sin pérdida de átomos, es decir, la composición química de la cadena resultante es igual a la suma de las composiciones químicas de los monómeros que la conforman.
La polimerización es por condensación si la molécula de monómero pierde átomos cuando pasa a formar parte del polímero. Por lo general se pierde una molécula pequeña, como agua.
La polimerización por condensación genera subproductos. La polimerización por adición no.

2. En la polimerización por crecimiento en cadena los monómeros pasan a formar parte de la cadena de uno en uno. Primero se forman dímeros, después trímeros, a continuación tetrámeros, etc. La cadena se incrementa de uno en uno, monómero a monómero.
En la polimerización por crecimiento en etapas (o pasos) es posible que un oligómero reaccione con otros, por ejemplo un dímero con un trímero, un tetrámero con un dímero, etc., de forma que la cadena se incrementa en más de un monómero. En la polimerización por crecimiento en etapas, las cadenas en crecimiento pueden reaccionar entre sí para formar cadenas aún más largas. Esto es aplicable a cadenas de todos los tamaños. En una polimerización por crecimiento de cadena sólo los monómeros pueden reaccionar con cadenas en crecimiento.







 
Policondensacion
Las reacciones de policondensación son aquellas reacciones químicas en las cuales el polímero se origina mediante sucesivas uniones entre monómeros, los cuales emiten moléculas condensadas durante el proceso de unión.
Las moléculas condensadas que se emiten al ambiente debido al proceso de policondensación, depende de la naturaleza de los monómeros que se unirán para dar origen al polímero, por ejemplo en los adhesivos con base silicona de 2 componentes cuando se produce la reacción de policondensación durante la fase de curado, estos emiten alcoholes al ambiente.
Las moléculas condensadas que se originan durante el proceso de policondensación son moléculas de bajo peso molecular como agua, cloruro de hidrógeno, alcoholes, amoniaco, etc... , las cuales se encuentran en estado gaseoso, separándose del polímero resultante via evaporación.
policondesacion


Poliadición
Las reacciones de poliadición son las reacciones químicas en las cuales el polímero se origina mediante sucesivas adiciones de grupos funcionales (monomero A) a estructuras moleculares con dobles enlaces (monomero B).
Es decir, partimos de una molécula que contiene dobles enlaces (monómero B), los cuales mediante la acción de la temperatura, presión o algún agente químico rompen el doble enlace, es en este momento cuando el monómero A ocupa el lugar del doble enlace adicionándose a la estructura y formando el polímero.
Una de las principales características de las reacciones de poliadición es que durante el proceso de formación del polímero no se desprende ningún compuesto volátil, tal y como es el caso de las reacciones de policondensación.
poliadicion

Historia materiales sinteticos

Él termino plástico se aplica a las sustancias de distintas estructuras y naturalezas que carecen de un punto fijo de ebullición y poseen durante un intervalo de temperaturas propiedades de elasticidad y flexibilidad que permiten moldearlas y adaptarlas a diferentes formas y aplicaciones. Pero también se usa para ciertos tipos de materiales sintéticos obtenidos mediante fenómenos de polimerización o multiplicación artificial de los átomos de carbono en las largas cadenas moleculares de compuestos orgánicos derivados del petróleo y otras sustancias naturales. La palabra plástico deriva del griego plastikos, que se traduce como moldeable. Los polímeros, las moléculas básicas de los plásticos, se hallan presentes en estado natural en algunas sustancias vegetales y animales como el caucho, la madera y el cuero.

El desarrollo de estas sustancias se inició en 1860, cuando el fabricante estadounidense de bolas de billar Pelan and Collander ofreció una recompensa de 10.000 dólares a quien consiguiera un sustituto aceptable del marfil natural. Una de las personas que optaron al premio fue el inventor estadounidense Wesley Hyatt, quien desarrolló un método de procesamiento a presión de la piroxilina, un nitrato de celulosa de baja nitración tratado previamente con alcanfor y una cantidad mínima de disolvente de alcohol. Si bien Hyatt no ganó el premio, su producto, patentado con el nombre de celuloide, se utilizó para fabricar diferentes objetos, desde placas dentales a cuellos de camisa. El celuloide tuvo un notable éxito comercial a pesar de ser inflamable y de su deterioro al exponerlo a la luz.

Durante las décadas siguientes aparecieron de forma gradual más tipos de plásticos. Se inventaron los primeros plásticos totalmente sintéticos: un grupo de resinas desarrollado hacia 1906 por el químico estadounidense de origen belga Leo Hendrik Baekeland, y comercializado con el nombre de baquelita.
En 1920 se produjo un acontecimiento que marcaría la pauta en el desarrollo de materiales plásticos. El químico alemán Hermann Staudinger aventuró que éstos se componían en realidad de moléculas gigantes. Los esfuerzos dedicados a probar esta afirmación iniciaron numerosas investigaciones científicas que produjeron enormes avances en esta parte de la química. En las décadas de 1920 y 1930 apareció un buen número de nuevos productos, como el etanoato de celulosa (llamado originalmente acetato de celulosa), utilizado en el moldeo de resinas y fibras; el cloruro de polivinilo (PVC), empleado en tuberías y recubrimientos de vinilo, y la resina acrílica, desarrollada como un pegamento para vidrio laminado.
Uno de los plásticos más populares desarrollados durante este periodo es el metacrilato de metilo polimerizado, que se comercializó en Gran Bretaña con el nombre de Perspex y como Lucite en Estados Unidos, y que se conoce en español como plexiglás. Este material tiene unas propiedades ópticas excelentes; puede utilizarse para gafas y lentes, o en el alumbrado público o publicitario. Las resinas de poliestireno, comercializadas alrededor de 1937, se caracterizan por su alta resistencia a la alteración química y mecánica a bajas temperaturas y por su muy limitada absorción de agua. Estas propiedades hacen del poliestireno un material adecuado para aislamientos y accesorios utilizados a bajas temperaturas, como en instalaciones de refrigeración y en aeronaves destinadas a los vuelos a gran altura. El PTFE (politetrafluoretileno), sintetizado por primera vez en 1938, se comercializó con el nombre de teflón en 1950. Otro descubrimiento fundamental en la década de 1930 fue la síntesis del nailon, el primer plástico de ingeniería de alto rendimiento.

Durante la II Guerra Mundial, tanto los aliados como las fuerzas del Eje sufrieron reducciones en sus suministros de materias primas. La industria de los plásticos demostró ser una fuente inagotable de sustitutos aceptables. Alemania, por ejemplo, que perdió sus fuentes naturales de látex, inició un gran programa que llevó al desarrollo de un caucho sintético utilizable. La entrada de Japón en el conflicto mundial cortó los suministros de caucho natural, seda y muchos metales asiáticos a Estados Unidos. La respuesta estadounidense fue la intensificación del desarrollo y la producción de plásticos. El nailon se convirtió en una de las fuentes principales de fibras textiles, los poliésteres se utilizaron en la fabricación de blindajes y otros materiales bélicos, y se produjeron en grandes cantidades varios tipos de caucho sintético.

Durante los años de la posguerra se mantuvo el elevado ritmo de los descubrimientos y desarrollos de la industria de los plásticos. Tuvieron especial interés los avances en plásticos técnicos, como los policarbonatos, los acetatos y las poliamidas. Se utilizaron otros materiales sintéticos en lugar de los metales en componentes para maquinaria, cascos de seguridad, aparatos sometidos a altas temperaturas y muchos otros productos empleados en lugares con condiciones ambientales extremas. En 1953, el químico alemán Karl Ziegler desarrolló el polietileno, y en 1954 el italiano Giulio Natta desarrolló el polipropileno, que son los dos plásticos más utilizados en la actualidad. En 1963, estos dos científicos compartieron el Premio Nóbel de Química por sus estudios acerca de los polímeros.

 En la industria española del automóvil se utilizaron en 1957 aproximadamente 1,1 kg de plástico por automóvil, siendo en 1970 el consumo de más de 50 kg, y en la actualidad, los fabricantes emplean una media de 110 kg por automóvil. se calcula que para los próximos años, los plásticos utilzados en los vehículos serán aproximadamente el 30% del peso. De este porcentaje, en el interior de los turismos puede llegar al 70%, mientras que en el exterior será del 30%.
Así pues, fabricantes y proyectistas, en busca de confort, reducción de peso y de ruidos, emplean cada vez más el plástico en los automóviles.

martes, 24 de abril de 2012

Remaches practica.

Esta practica se divide en dos una de ellas consiste en unir mediante remaches 2 piezas de metal y por otra parte esta la que tienes que unir 3 pero la del centro a de estar superpuesta a las otras dos.

Nosotros comenzamos por la de 2 piezas. Para ello lo primero que hicimos fue seleccionar la lamina de 0,8 dividirla en dos y cortarla, de esto no tengo fotos, de lo que si tengo es del resultado final.
Aqui ya habiamos empezado a hacer las marcas donde irian los agujeros, para posteriormente hacerlos y despues doblamos una de las partes para poder hacer los remaches posteriores.
Este es el util que se necesita, es la foto se ve como hacemos los agujeros, al hacer los agujeros fijarnos por el orificio suerior donde los hacemos por que si no lo hacemos bien luego el remache no entrara. Para doblar despues una de las dos mitades tenemos que dar la vuelta a la cabeza del util y pasarlo por todo un lado, la verdad es que estan bastante duros da igual lo que hagas, si al usarlos no funcionan no des mas fuerza que es que posiblemente este rota, ya que nosotros la cambiamos varias veces.

A continuacion con los agujeros hechos y la parte doblada, tenemos que  remachar. Para ello cojemos un remache metemos la punta en la remachadora y despues presionando con fuerza  en el agujero haremos el remache
Una vez terminasemos los tres agujeremos dariamos por finalizada la primera pieza.
Aqui la tendriamos.

Ahora comenzariamos con la segunda que se consta de 3 piezas que la verdad no medimos muy bien, y no nos quedo un acabado muy bueno la verdad.
Despues tendriamos que marcar agujeros y doblar los lados de dentro que tocarian con al pieza central al hacer los remaches. La pieza del centro no hay que doblarla pero pero si hay que agujerearla por ambos lados
Asi quedaria la pieza central.
A continuacuon tocaria remachar cada uno de los cuatro agujeros como hicimos anteriormente.
Aqui vemos dos hechos uno presentado y uno apunto de hacerse, recordar lo de usar ambas manos por que cuesta bastante.

Este es el resultado final, mejorable sin duda.

Para esa practica usamos todo lo anteriormente mencionado no recuerdo usar nada mas.
Los epis los de siempre no tiene un gran riesgo esta practica, lo unico tener cuidado con no pillarte la mano con la de doblar ni nada de eso. Mas vale estar antentos a lo que hacemos que pensar que somos intocables por llevar unos guantes.

Tiempo empleado unas 3 horas, quizas sea demasiado.

Practica realizada por el EQUIPO A Eduardo Agudo y Adrian Allende.